

Smart Storage: Stabilization of Stored and Landfilled Waste using Aerobic and Anaerobic Biotreatment Technology

Terry Hazen, Sharon Borglin, Curt Oldenburg, Felix Santiago, Elizabeth Padilla, and Carlos Rios

Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory

Mg

No

Co Cu

Pb

Zn

Cd

Average Metal Concentrations in the Leachate Aerobic A

pb) 7180

48.2

63.3

1780

657

Aerobic B (ppb)

http://esd.lbl.gov/CEB/landfill/

ABSTRACT

In order to increase the lifetime of landfills and to lower leachate treatment costs, an increasing number of Municipal Solid Waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. We have carried out a laboratory study using three 200-liter tanks filled with fresh waste materials to evaluate different treatment strategies of MSW. Landfill gas composition, respiration rates, and subsidence were measured to compare the relative effectiveness of the two treatments and were designed to develop bioreactors systems for studying the biotreatment of stored waste. The tanks were prepared to provide the following conditions: (a) aerobic (air injection with leachate recirculation), (b) anaerobic (leachate recirculation), and (c) a dry anaerobic landfill (no air injection, no water addition and no leachate recirculation). Leachate from the aerobic tank had significantly lower concentrations of potential contaminants, and dissolved organic carbon and ammonia. Respiration tests on the aerobic tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Over the test period, the aerobic tank settled 35%, the anaerobic tank 21.7%, and the dry tank 7.5%. Mass loss calculations were also well correlated with the settling rates. The aerobic tank produced negligible odor compared to the anaerobic tanks as indicated by the ammonia levels that were 2 orders of magnitude higher in the leachate of the anaerobic tank. These results suggest that aerobic management of MSW landfills could increase the rate of stabilization, reduce odor, and reduce the need for leachate and air emissions treatment systems and elaborate containment strategies. Though anaerobic treatment is an attractive option because it produces methane as a post-waste product, the long-term cost advantages of aerobic strategies may be more practical.

BIOREACTOR DESIGN

Three bioreactors consisting of 200-liter clear. hexagonal Lucite tanks were instrumented to monitor pressure, temperature, moisture, humidity gas and leachate composition, and flow rates. All tanks contained 9 cm of gravel at the bottom. overlain by 30 kg of typical MSW. Air was injected into the bottom of the tanks for aerobic treatment, and gas was vented out the top. Leachate could be collected at the bottom of the tanks, recirculated, and sprinkled over the top of the MSW. The tanks were insulated on the sides and top with 2-inch solid foam and covered with vinyl fabric to block light. The aerobic tanks had a continuous flow of humidified air through the tanks.

Two experimental runs of 400 days were completed. In the first experiment, one aerobic and one anaerobic bioreactor tank were tested, and the third tank was used to simulate conversion of a conventional dry, anaerobic landfill to a wet, aerobic landfill. The second experiment consisted of two aerobic and one anaerobic bioreactor.

Recirculation Rate (mL/min) New

Air Flow Rate (Umin) 1.9 None

None

SULTS			
by demonstrated that maintainin 4 the rates of settling and stabi- cachate and gas. The aerobic 1 han the anarerobic reactor and 1 d parameters (BOD, COD, an or leachate. The reduction in no ystem.	ng the MS ilization a andfill bi maintaine ad metals xious odo	W landfill as a nd produced m oreactors showe d a neutral pH) compared to rs was a signific	n acrobic bioreactor ore environmentally d significantly more and low levels of all the wet, anacrobic ant advantage of the
	usipodiuo v. as		

RF

This stu

increase benign l settling

m eas ure

aerobic

K

Landfill gas c

cs over a 20-day beriod. This figure shows aerobic tank A from day 140 to day 160. The dip in the O₂ se in CO ts. CH. was not de

rates as the MSW aged in the aerobic wet tanks. The dashed line on the O from the aerobic, wet and ion curve represents a log fi

MSW from 0 to 400 days. Settlement from have bee combined and grouped erobic and an

LANDFILL BIOREACTOR MODEL: T2LBM

Analysis of microbial community structure gives a general overview of the microbial communities present in the landfill bioreactors under different environmental conditions (oxic, anoxic), and give an understanding of what groups of microorganisms are actively involved in bioremediation and landfill stabilization. This analysis also allows for a determination of the conditions that are most favorable for the microorganisms in the landfill to degrade refuse components at optimal rate.

CONCLUSIONS

Storage of landfilled waste with both leachate recirculation and air injection accelerates the decompositions of the waste. Concentrations of metals and other constituents in the leachate of the MSW bioreactor are lower overall in the aerobic system. • The aerobic landfill bioreactors showed significantly more settling and mass loss than the anaerobic bioreactor and maintained a neutral pH

- and low levels of all measured parameters, including BOD, COD, and ammonia, compared to the wet, anaerobic bioreactor leachate The reduction in noxious odors was also a significant esthetic advantage of the aerobic system.
- All major groups of microbial communities are present in the Bioreactor leachate and gravel sample as well as in the landfill samples, but
 their distribution is varied. Approximately 80% of the biomass belong mainly to bacteria. The remaining 20% accounts for fungi and other
- microeukarvotes To explore the bacterial communities present in the landfill bioreactors the 16S rRNA of the total communities were amplified and analyzed by T-RFLP. The results showed more diversity in the leacheate samples from the anaerobic bioreactors. Dehalococcoides was present of this
- group in the leacheate samples from Yolo County Landfill The good agreement between the laboratory experiment and T2LBM simulation results for a relatively complex process involving flow,
- transport, biodegradation, and gas production suggests that T2LBM is modeling fundamental processes active in the mesoscale bioreactor • To our knowledge, T2LBM is the first simulation model capable of handling 3-D multicomponent and multiphase flow, transport, and biodegradation with landfill gas production.

White, D.C., Davis, W.M., Nickels, J.S., King, J.D., Bobbie, R.J. Determination of sedimentary microbial biomass by extractable lipid phosphate. Oecologia. 1979. 40. 51-62.

- prospinate. Occording: 1777. 40: 1792. Borglin, S., Hazen, T., Oldenburg, C., and Zawislanski, P. Mesoscale laboratory experiments of aerobic and anaerobic biotreatment of municipal solid waste, March 2002. LBNL 50576 (submitted for publication)
- Oldenburg, C.M., Borglin, S.E., and Hazen, T.C., Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor. LBNL 50027 (submitted for publication)

This work was supported by Laboratory Directed Research and Development Funds at Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC03-76SF00098.

	Component	Weight (kg)	Weight (%) with soil	Weight % without soil	Average Weight % from Literature
	Paper (mixed, cardboard)	5.7	19.0	25.7	42.2
arhage		(dry)	(dry)	(dry)	(wet)
anbage	Food Waste	3.6	12.0	16.2	12.1
omposition in	Metal (aluminum, steel)	2.1	7.1	9.6	7.8
	Glass	2.5	8.4	11.4	9.4
Bioreactors	Plastic (bottles, bags)	2.4	8	10.8	6.4
	Garden Waste	2.7	9	12.2	12.8
	Other Waste (wood, rubble, textiles, rubber, leather, soil)	11.0	10.5	14.2	8.2
	0.1	7.0	26.0		

B. T-RFLP Community Analysis leacheate and gravel TRELP

BERKELEYLAR

Detection of

PCR with specific

occoldes by

DNA Extrac

Fig 3. (A) number of terminal fragments present (richness) (B) Relative abundance of T-RF 16S rRNA from landfill

· . . . `• •